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Abstract

In many situations, simulation of complex phenomena requires a large number of inputs

and is computationally expensive. Identifying the inputs which most impact the system

so that these factors can be further investigated can be a critical step in the scientific

endeavor. In computer experiments, it is common to use a Gaussian spatial process to

model the output of the simulator. In this article, we introduce a new, simple method for

identifying active factors in computer screening experiments. The approach is Bayesian

and only requires the generation of a new inert variable in the analysis; however, in the

spirit of frequentist hypothesis testing, the posterior distribution of the inert factor is used

as a reference distribution against which the importance of the experimental factors can

be assessed. The methodology is demonstrated on an application in material science, a

computer experiment from the literature, and simulated examples.

KEY WORDS: Computer simulation; Latin hypercube; Random field; Screening; Spatial

Process.

1 Introduction

Rapid growth in computer power has made it possible to study complex physical phenomena

that might otherwise be too time consuming or expensive to observe. Scientists are able to

adjust inputs to computer simulators (or computer codes) in order to help understand their
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impact on a system. Many such computer simulators require the specification of a large number

of input settings and are computationally demanding. As a result, only a limited number of

simulation runs tend to be carried out. Scientists must therefore select the simulation trials

judiciously and perform a designed computer experiment (or simply a computer experiment).

One main goal of experimentation, particularly in its early stages, is to determine the

relative importance of each input variable in order to identify which have a significant impact

on the process being studied. Since there can be many inputs into a computer code, an

important problem is the identification of the most active factors. This is often referred to as

screening (e.g., Wu and Hamada, 2000) and is the main focus of this article.

Most computer experiments are unique in that the response has no random error compo-

nent. That is, replicates of the same inputs to the computer code will yield the same response.

To deal with this, Sacks et al. (1989a, 1989b) proposed modelling the response from a computer

experiment as a realization from a stochastic process. This allows for estimates of uncertainty

in a deterministic computer simulation. Welch et al. (1992) also used this model in their ap-

proach to screening in complex computer experiments. We focus specifically on modelling the

computer simulated response as a Gaussian process with a spatial correlation structure. This

model is particularly attractive since it fits a very large class of response surfaces. In addition,

a white-noise component is introduced that allows for random error such as small errors in

computational convergence in the computer model. The flexibility of this model does not come

without a price, however. Choosing which predictor variables are active in the spatial model

presents a challenging variable selection problem.

In this article, a new approach for screening when using a spatial process model is presented.

The method, reference distribution variable selection (RDVS), is used to identify a subset of

factors to be examined more closely in later stages of experimentation. To carry out RDVS,

the experimental variables are augmented with a factor which is known to be inert, and a

Bayesian analysis is repeated several times. Rather than basing screening decisions solely on

the posterior distributions of the relevant model parameters, the relevant posterior distributions

are compared to a reference distribution derived from the inert factor inserted into the analysis.

Parameters with more extreme posterior distributions relative to the reference distribution are
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deemed important. Though the model fitting is fully Bayesian, we use a reference distribution

to identify important factors, giving the variable selection approach a frequentist flavor.

The RDVS methodology has many features that make it attractive for screening. First,

implementation of the methodology requires only the inclusion of one extra variable, which

contributes little to the complexity of the analysis. Second, the prior distribution placed on

the inert factor is the same as the prior placed on the real process variables, making them

comparable with no additional tuning required. In essence, the added factor self-calibrates

itself to the other inert factors, making the analysis relatively robust to prior specification.

A brief outline of the paper is as follows. In the next section, we consider screening for

a cylinder deformation computer simulator. Next, the Gaussian process model used in the

analyses of computer experiments is presented in Section 2. In Section 4, the RDVS method-

ology is introduced in detail and a variable selection criterion is proposed. The performance of

the methodology is demonstrated in Section 5 by applying it to a problem from the literature

(Schonlau and Welch, 2005) and simulated examples, followed by an exploration of its robust-

ness to prior choice in Section 6. Finally, in Section 7, we use RDVS to successfully identify

a subset of important factors in a real application. We finish the paper with some concluding

remarks in Section 8.

2 Cylinder Deformation Application

Detailed computer simulation of physical processes plays an important role in the development

and understanding of physics-based mathematical models. One of the applications we have

been working with at Los Alamos National Laboratory (LANL) is a finite element code that

simulates a high velocity impact of a cylinder (hereafter referred to as the Taylor cylinder

experiment). In this experiment, a copper cylinder (length = 5.08 cm, radius = 1 cm) is

fired into a fixed barrier at a velocity of 177m/s. The resulting impact deforms the cylinder

according to the plastic deformation model of Preston, Tonks, and Wallace (2003), the PTW

model. This model is governed by 14 parameters (factors), which in essence specify how much

energy is required to crush each cylinder. Figure 1 shows a sample of cylinder deformations

corresponding to a range of settings for these input parameters.
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Figure 1: Collection of simulated cylinders ranging from most compressed to the least taken from the

set of 118 simulations of the Taylor cylinder test.

h = 3.5 cm h = 3.8 cm h = 4 cm h = 4 cm h = 4.1 cm h = 4.4 cm

The PTW model was developed to be applicable for a wide range of strain rates, and, in

general, all of the factors play an important role in simulating the the deformation. Indeed, this

is why they were included as inputs to the computer code. However, a computer experiment

frequently exercises the simulator over a limited range of physical conditions (e.g., velocities

or strain rates). Over this range, the simulator response is often dominated by a very limited

number of input parameters.

At the input velocity of 177m/s used for this experiment, it is expected that deformation

will only be affected by a subset of the 14 input parameters. Furthermore, the Taylor cylinder

experiment is only a small component of broader experimentation, so reducing the number

of factors to carry on to further experiments is beneficial. The goal of this study is to iden-

tify which factors most significantly impact the deformation (i.e., screening) over the reduced

input space of the complex computer simulator. In the following sections, we introduce the

most common approach for modelling the response from a computer code and propose a new

approach for variable selection. We re-visit this example in Section 7.

3 Gaussian Process Model

To model the response from a computer experiment, we use a Bayesian version of the Gaussian

process (GP), first proposed by in this setting Sacks et al. (1989a). Our formulation is tailored

to the types of simulation models we have been working with at the LANL, such as the Taylor

cylinder experiment described in the previous section. In many cases, the computer codes

simulate well understood physical processes, taking in a number of input parameters and
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frequently producing a highly multivariate output. For the purpose of this paper, focus will

be on a univariate summary of interest from the output. Simulator inputs typically describe

initial conditions as well as physical parameters such as material strength or equations of state.

In this article, we make no distinction between parameter type, although this distinction is

important in model calibration (e.g. Kennedy and O’Hagan, 2001; Goldstein and Rougier,

2004).

Although a simulator generally requires a large number of inputs that play an important

role in emulating a physical process over a broad range of conditions, computer experiments

often only exercise the simulator over a limited range, where only a few factors dominate

the response. It is worth noting that the specification of the input setting range can greatly

influence whether or not a particular input is selected as active. In the applications we have

considered, there is typically experimental data or specific application requirements of the

simulator that lead to specifying this range, so these input ranges can be taken as fixed and

appropriate. The goal of the screening experiment is to identify these active factors – or inputs

– in light of factor sparsity (Box and Meyer, 1986). The GP provides a flexible framework

for response surface modelling, but this flexibility makes deciding which factors are active and

which are inert more challenging.

The input to the computer code, X, is an n× p matrix built by stacking n input vectors,

x1, . . . ,xn, each of length p. The corresponding outputs for the n simulation runs are held in

the n-dimensional vector y(X). As mentioned, this is often a one-dimensional summary of a

multivariate output. To facilitate prior specification, the response is standardized so that it

has a mean of zero and a variance of one. The design space is also transformed so that the

input settings range over the p-dimensional unit cube [0, 1]p.

We model the (centered and scaled) simulator response, y(X), as the sum of a GP, z(X),

which depends on the design matrix, X, and independent white noise. That is,

y(X) = z(X) + ε, (1)

where ε is a mean zero white noise process with variance 1/λε, independent of z(X). The GP,
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z(X), is specified to have mean zero and covariance function

Cov(z(xi), z(xj)) =
1
λz

p∏

k=1

ρ
2αk |xik−xjk|αk

k . (2)

Here, xik denotes the kth input value for the ith simulation trial.

There are a few features about the correlation function in (2) that one should notice. Under

the re-parameterization ρk = e−(1/2)αkθk (θk > 0), this correlation function is the same as that

suggested by Sacks et al. (1989a). We prefer the parameterization in (2) because it facilitates

posterior exploration via Markov chain Monte Carlo (MCMC). In addition, interpretation is

straightforward: if ρk is large (i.e. close to one), the process does not depend on factor k.

Therefore, estimation of the ρk’s helps to determine which of the input variables, or factors,

may be active for the given investigation. In general, specifying αk = 2 in (2) is a reasonable

simplifying assumption for our simulator-based applications. This is because the simulator

response to input changes is nearly always smooth in our experience. Also, any roughness in

response that would suggest taking α < 2 is typically from numerical “jitter” and is better

accounted for in the error process ε. The stipulated covariance given in (2) is separable in

the sense that it is the product of component-wise covariances. This enables one to handle a

large number of inputs since each input dimension k requires only one additional parameter,

ρk. In addition, this simplified covariance structure still accommodates multi-way interactions

in z(X).

The GP, z(X), accounts for most of the variation in the simulation output, while the error

term ε is meant to account for local roughness in the simulator response, typically due to

numerical effects such as gridding, tabular function representation, or convergence tolerance.

Because the observed simulation output is standardized to have mean zero and variance one,

we wish to specify a prior for λz that encourages its value to be close to one. One way to do this

is to take λz to have a Γ(az = 5, bz = 5) prior (i.e. π(λz) ∝ λaz−1
z e−bzλz). In our experience,

if z(X) is adequately approximating the simulator response, the error term should account

for only a small amount of the response standard deviation. Thus, the prior specification

distribution for λε should have a relatively large mean with a constraint to prevent λε from

being too small. One reasonable choice is a gamma prior, Γ(aε = 2.5, bε = 0.025), with the

condition that λε > 5, so that π(λε) ∝ λaε−1
ε e−bελεI[λε > 5]. Under this prior, the error term
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is expected to account for only about 10% of the response standard deviation, and with the

given constraint, never more than about 45%.

The prior specification for ρ = (ρ1, . . . , ρp)T is motivated by the variable selection priors

from the regression context (e.g., George and McCulloch, 1993; Clyde, 1999). Each component

of ρ is given an independent mixture prior of a standard uniform and a point mass at one:

π(ρk) = γI[0 ≤ ρk ≤ 1] + (1− γ)δ1(ρk). (3)

Here, γ is the prior probability that input k is active and δ1(·) denotes a point mass at one.

The model prior for ρ is the product of the priors on the independent components. This

specification is particularly attractive in the screening context because the mixture probability

can be chosen to reflect prior beliefs on the number of active factors, thereby incorporating the

effect sparsity assumption into the prior. In the examples explored later, we specify γ = 1/4 to

encode a prior belief that about one quarter of the p inputs will be active (e.g., factor sparsity).

By specifying a value of γ that does not depend on the number of inputs, prior beliefs are not

impacted by the addition of the inert variable for RDVS.

The likelihood implied by (1) for the response given z(X) and λε is

L(y|z, λε) ∝ λ
n
2
ε exp{−1

2λε(y − z)T (y − z)}.

Using a Gaussian process model for the response surface z(X) yields the prior

π(z|λz, ρ) ∝ λ
n
2
z |R(ρ)|− 1

2 exp{−1
2λzz

T R(ρ)−1z},

where R(ρ) is an n× n matrix with entries

Rij(ρ) =
p∏

k=1

ρ
4(xik−xjk)2

k .

Recall that this is the correlation function given in (2) with αk = 2.

This likelihood, along with the prior distributions for z, λε, λz and ρ as given, leads to the

posterior density

π(z, λε, λz, ρ|y) = L(y|z, λε)× π(z|λz, ρ)× π(λε)× π(λz)× π(ρ).
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After integrating out z, the posterior density for λε, λz and ρ is found to be

π(λε, λz, ρ|y) ∝
∣∣∣∣
1
λε

In +
1
λz

R(ρ)
∣∣∣∣
− 1

2

exp
{
− 1

2y
T (

1
λε

In +
1
λz

R(ρ))−1y

}
× λaε−1

ε e−bελε

×λaz−1
z e−bzλz × π(ρ), (4)

in which In denotes the n × n identity matrix. Realizations from this (p + 2)-dimensional

posterior distribution can be drawn using a standard MCMC algorithm, which only requires

Metropolis updates for implementation. In particular, it is the realizations of ρk, k = 1, . . . , p

that are used for making screening decisions. Ideally, one can find a cut-off value for the ρk’s

which can then be used to decide if a factor is active or inert in the spirit of a frequentist

hypothesis test. In fact, in the sequel, we do just that.

4 RDVS for Spatial Models

As mentioned, the GP provides a flexible framework for response surface modelling. It pro-

duces a much broader class of potential response surfaces than the classical linear or polynomial

regression models, and easily adapts to the presence of non-linearity and interactions. How-

ever, this flexibility makes deciding which factors are active and which are inert challenging.

When there are p factors, there are 2p possible combinations of factors. A good discussion on

assigning model priors is given by Chipman, George and McCulloch (2001). A fully Bayesian

implementation for the screening of active factors often requires one to stipulate a prior on

all 2p possible sub-sets, which is not always straightforward. In addition, variable selection

decisions in this context are often subjective and sensitive to prior model specification.

In this section, a new simple method for assessing the significance of factors in a GP is

introduced. It is worth noting that although RDVS is introduced with reference to the GP,

we believe its application is much broader and can be adapted to other models. Our approach

to identifying which individual estimates of ρk are small enough (far enough from one) to be

deemed as evidence of a significant factor parallels a frequentist’s approach to model selection.

The central issue is to identify a reference distribution and selection criterion that can be used

to assess the importance of the experimental factors.

To outline the approach, consider the spatial model in (1). Since it is unknown which
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experimental factors are important (indeed, finding them is the goal of the analysis), gauging

the relative magnitudes of the ρk’s can be difficult. RDVS serves as a remedy to this problem.

To implement, an additional variable which is known to be inert – and thus has no impact on

the response – is appended to the design matrix. Now the experimenter knows how an inert

factor behaves, and therefore has a benchmark against which the experimental factors can be

compared. We propose to use the posterior distribution of the inert, or null, variable as a

reference distribution to decide which of the real factors are important.

Consider the n× p design matrix X, where the ith row of the design matrix represents the

level settings of the p continuous covariates for the ith trial. An augmented n×(p+1) design ma-

trix is constructed by adjoining to X one additional column, X† = (x1(p+1), x2(p+1), . . . , xn(p+1))T .

To mimic the p real covariates, the elements of the additional column vector, X†, range from

0 to 1 (recall that the original design matrix X has been scaled to this range). Ideally, the

column vector X† is orthogonal to each set of columns in X. In practice, this is unlikely to be

the case, and so a way to select X† is discussed shortly.

We emphasize that, by construction, the augmented variable is not a true experimental

variable and has no impact on the response. The analysis proceeds as if there are p+1 factors,

but in this case it is known that the added factor is inert. Therefore, the posterior distribution

of ρp+1 is the posterior distribution of the correlation parameter for an inert variable. Since the

variable selection problem amounts to deciding which variables have an impact on the response

that is distinguishable from noise, the posterior distributions of the experiment variables can be

compared to that of the added variable to decide which variables can be claimed as active. That

is, similar to frequentist hypothesis testing, the posterior distribution of the added variable is

used as a reference distribution to assess the importance of the ρk’s corresponding to the

experimental factors. The key feature of this approach is that it makes judging the actual size

or ranks of the ρk’s unnecessary (i.e. the experimenter does not need to specify an arbitrary

value below which ρk is considered to be sufficiently less than one). This is beneficial since

which values of ρk are “small” is dependent on the particular data at hand. The only judgement

that is necessary for RDVS is whether or not the posterior distributions of the experimental

factors are distinguishable from the posterior distribution of the inert variable.
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As noted, the ideal choice of X† would be orthogonal to all sets of columns in X so that

the posterior distribution of ρp+1 would not be impacted by the choice of level settings of the

other experiment factors. Such a column is unlikely to exist. To address this, we randomly

sample X† from the design space of X, and perform the above GP model analysis. Since

X† may be correlated with some columns in X, this procedure is repeated several times and

the posterior distributions of the added inert variables from each iteration are combined to

form one reference distribution corresponding to that of a null variable. This has the effect of

averaging over all added columns.

There are a variety of ways one could imagine comparing the posterior distributions of the

experiment factors to that of the null variable. One possible approach is to use the individual

realizations at each step of the MCMC. For example, it is known that ρp+1 should be close to

one by construction, and ρk corresponding to an active variable should be less than one. Thus,

the difference ρk − ρp+1 should be negative for most realizations of the MCMC for an active

factor, while centered around zero for an inert factor. Thus, at the lth step of the MCMC, one

could compute ρk − ρp+1 for k = 1, ..., p, and after the MCMC has converged have p reference

distributions of ρk − ρp+1. As a rule, a percentile of the reference distribution could be used

as a cut-off for making variable selection decisions. That is, if a chosen percentile of the kth

reference distribution, ρk − ρp+1, is less than zero, then factor k is active. The difficulty with

this approach is specifying and interpreting an appropriate cut-off for decision making.

Instead, consider the following approach. Each time the inert factor is added to the design

matrix, X, and the analysis is performed, summarize the posterior distribution of ρp+1 by its

median, ρ̃p+1. The process of inserting an inert variable, running the MCMC, and saving the

posterior median of ρp+1 is repeated many times. From this, an estimate of the distribution for

the posterior median of a correlation parameter corresponding to an inert variable is obtained.

In addition, every realization of ρk, k = 1, . . . , p, is recorded at each step of the MCMC for the

true experimental factors. The posterior median over all realizations for each of the ρk can be

compared to the reference distribution of the inert factor median to assess the importance of

factor k. The posterior estimates ρ̃k can also be used for prediction, etc., but that is beyond

the scope of this article.
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The disadvantage of this approach is the increase in computational time – though not the

complexity – since the MCMC must be run many times in order to construct the reference

distribution. However, the approach has many advantages. If ρ̃k is compared to, for example,

the 5th percentile of the null distribution for posterior medians, a frequentist’s interpretation of

importance can be used (i.e. one would expect to falsely identify an inert factor as significant

approximately five percent of the time). For screening experiments, one typically would prefer

to err on the conservative side, so we propose using the 10th percentile of the null distribution

as a cut-off. By using this approach, the posterior distributions of the ρk can be compared and

assessed.

To summarize, RDVS entails the following steps:

1. Augment the experiment design, X, by creating a new design column corresponding to a

variable with no significant effect. The level settings of the added inert factor are selected

at random and cover the same design region as the original experimental factors.

2. Find the posterior median of ρp+1.

3. Repeat steps 1 and 2 m times. Obtain a distribution for the posterior median of a null

effect to be used as a reference distribution.

4. Compare the posterior medians ρ̃k of the experimental variables to the reference distri-

bution to assess their importance. The percentile of the reference distribution used for

comparison reflects the rate of falsely identifying inert effects as active.

5 Simulated Examples

To illustrate the performance of RDVS, we have chosen three simulated examples of varying

complexity. Using known functions allows us to evaluate the methodology. For all of the ex-

amples, the design matrix used is a 54-run Latin hypercube design with p = 10 input variables.

Latin hypercube designs are a popular choice (such designs were introduced by McKay et al.

(1979) specifically for computer experiments) because they can be generated with minimal

computational effort and fill the design space relatively well. In addition, when the sample in-

puts of such a design are projected into any one dimension, complete stratification is achieved.
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The particular design used in these examples has the additional property that the minimum

pairwise distances in each two-dimensional projection is approximately maximized, yielding a

space-filling design in each of the p(p− 1)/2 two-dimensional projections of the design space.

After the three simulated examples, we will look at a larger example that has been used to

illustrate other screening techniques from the literature for comparison.

EXAMPLE 1:

The first example is meant to demonstrate the performance of the RDVS methodology for

a simple case. To begin, data are generated from the linear model

y(xi) = 0.2xi1 + 0.2xi2 + 0.2xi3 + 0.2xi4 + ei, (5)

where ei ∼ N(0, σ2) with σ = 0.05. After generation, the response is standardized to have

mean zero and standard deviation one. For the simulation study, data are generated from

the linear model given in (5) 1000 times and the important factors using RDVS are identified

at each iteration of the simulation. For this example and each of the subsequent examples,

m = 100 is used in step 3 of the algorithm.

For illustration, consider in detail one iteration of the simulation study. First, a response

is generated as described above. To implement RDVS, an inert variable (i.e. an 11th factor) is

added to the design, with levels randomly selected from the design region of the original ten

experimental inputs. The GP previously described in Section 3 is used to model the response

surface. As mentioned, for all examples γ in (3) is taken to be 1/4 (in general, γ should be

chosen to reflect the user’s prior beliefs on effect sparsity).

Using the augmented design matrix, 600 iterations of the MCMC algorithm are run to

generate posterior realizations of the ρk, k = 1, . . . , 11, under the GP model, with the first 100

discarded as burn-in. The augmentation procedure and MCMC implementation is repeated

m = 100 times. We find this is sufficient to obtain a reasonable estimate of the distribution

for the posterior median of ρ11. All 50,000 realizations of ρk for the ten experiment inputs are

saved, and the posterior median of the correlation parameter for the inert variable is obtained.

The combined 100 posterior medians ρ̃11 form the reference distribution to be used for variable

selection.
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Figure 2: Posterior distributions of ρk for one iteration of the simulation study in Example 1.
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Figure 2 shows boxplots of the posterior realizations of ρk (k = 1, . . . , 10) obtained from

the MCMC corresponding to one iteration of the simulation study. The 10th percentile of the

reference null posterior median distribution is indicated by the solid horizontal line on the

figure. There are some features of Figure 2 worth noting. As usual, the boxes of the boxplots

denote the first, second and third quartiles of a distribution. One can see in this plot that for

this data, the posterior distribution of an inert factor, such as factor 5, is pushed up against

one. Indeed, for this factor, the upper three quartiles of the posterior distribution are all one.

The “tail” on the distribution shows the range of the small fraction of posterior realizations

that are less than one. This pattern is also observed for the other inert factors to varying

degrees. Conversely, the posterior distribution of an active factor (e.g. factor 1) is centered far

less than one.

By just inspecting these boxplots, an experimenter would likely correctly identify the first

four inputs as having a significant impact on the response because the posterior medians are

all much less than 1 relative to the other factors. Looking at Figure 1, one may be tempted to

also declare factor 6 active, however, the posterior median for this factor is exactly 1. If the

more formal rule of comparing the posterior distributions of ρk for the experimental variables

to the 10th percentile of the null median distribution is followed, the first four inputs are indeed

13



Table 1: Proportion of times each factor is identified as important in 1000 generations of the linear

function given in (5).

Factor

Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.619 0.618 0.717 0.631 0.030 0.034 0.021 0.074 0.051 0.051

10th 0.852 0.855 0.910 0.880 0.061 0.064 0.053 0.137 0.076 0.102

15th 0.947 0.954 0.973 0.955 0.079 0.091 0.080 0.173 0.108 0.135

correctly identified as being important. Thus, for this iteration of the simulation study, the

decision is made to declare the first four inputs as active and the remaining factors as inert.

Table 1 summarizes the results for 1000 simulations. The performance of the approach is

investigated using the 5th, 10th, and 15th percentiles of the reference distribution as cut-off

points. The results show that RDVS does well at correctly identifying the active factors in

this simple example, as would be expected. It can also be seen from Table 1 that the false

identification of inert inputs as active is at the expected level corresponding to the percentile

used for decision making.

Before continuing, we make a brief digression back to the iteration of the simulation study

explored in detail throughout this example. One might question if the addition of the extra

variable for RDVS has an impact on the posterior distribution of the experimental variables.

To explore this point, the MCMC analysis is repeated on this same response without adding the

inert factor. Figure 3(a) shows the posterior distributions of the experimental variables when

the extra factor is added, while Figure 3(b) shows the same distributions generated without

using an augmented design matrix. The similarity of these plots suggests that there is no

obvious altering of the experimental posterior distributions as a side effect of the methodology.

Furthermore, inspection of the differences between posterior medians corresponding to the two

approaches (with and without augmentation) showed an average difference of only 2.85×10−4.

In order to explore the size of effects the RDVS selection method is able to detect, consider

repeating this simulation study with a slightly more complex linear function. The response

is now generated according to a linear function with decreasing coefficients on the first eight
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Figure 3: Posterior distributions of the experimental variables.

Table 2: Proportion of times each factor is identified as important in 1000 generations of the linear

function given in (6).

Factor

Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.679 0.180 0.062 0.025 0.016 0.023 0.017 0.031 0.009 0.036

10th 0.889 0.379 0.133 0.058 0.034 0.051 0.035 0.067 0.030 0.094

15th 0.959 0.540 0.217 0.092 0.061 0.098 0.065 0.107 0.063 0.149

inputs:

y(xi) = 0.2xi1 +
0.2
2

xi2 +
0.2
4

xi3 +
0.2
8

xi4 +
0.2
16

xi5 +
0.2
32

xi6 +
0.2
64

xi7 +
0.2
128

xi8 + ei, (6)

where again ei ∼ N(0, σ2) with σ = 0.05. After generation, the response is standardized to

have a mean zero and standard deviation of one. Table 2 gives the results for 1000 simulations

of this response. From these results, it can be seen that the first factor is still easily identified

as active, which is consistent with the previous results. In addition, the second and third

factors are detected as active more often than would be expected by chance, while the remain-

ing inputs (which have relatively small coefficients) are determined to be inert for the most part.

EXAMPLE 2:

For our second example, we explore how well RDVS can correctly identify a complete lack

of signal. Welch et al. (1992) observed it is difficult to distinguish between a model with no
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Figure 4: Posterior distributions of ρk for one iteration of the simulation study in Example 2.
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active factors and one with all active factors. Indeed, the sequential likelihood approach to

screening they proposed does not distinguish between these two models. In this case, because

RDVS decisions are made by making comparisons with an inert variable, it is anticipated

the methodology will be able to correctly detect a lack of activity amongst the experimental

variables when none exists. For this example, the response is generated as random noise. That

is, y(xi) = ei, where ei ∼ N(0, σ2) with σ = 0.05, and analysis proceeds as in Example 1.

Figure 4 shows boxplots corresponding to one iteration of this simulation study.

Note that in this plot it appears that all factors have correlations much less than one and

seem to be significantly impacting the response. This is because the amount of variability that

can be attributed to random noise is restricted in the model, and therefore the GP tries to

interpolate a signal through most of the “jitter”. In this case, based on a subjective examination

of the boxplots, an experimenter would likely incorrectly declare all the ρk’s to be less than

one (and therefore important). When RDVS is used, however, the extra null factor added for

the analysis looks and behaves like all the other inert factors, as indicated by the low value

of the 10th percentile of the reference distribution drawn in the figure. As a result, when the

RDVS decision rule is used, the correct variable selection decisions are made. This illustrates

the point that RDVS is based on comparisons between the experimental factors and the inert
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Table 3: Proportion of times each factor is identified as important in 1000 generations of random noise.

Factor

Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.003 0.013 0.004 0.007 0.006 0.008 0.001 0.006 0.003 0.005

10th 0.012 0.039 0.009 0.013 0.016 0.022 0.010 0.017 0.011 0.013

15th 0.033 0.064 0.032 0.039 0.029 0.041 0.023 0.027 0.027 0.031

factor, not on the actual values of the realized ρk’s. The results from 1000 simulations are

given in Table 3. It can be seen from these results that RDVS performs extremely well in this

setting.

EXAMPLE 3:

For the third example, the data is generated according to

y(xi) = sine(xi1) + sine(5xi2) + ei, (7)

where again, ei ∼ N(0, σ2) with σ = 0.05 and the response is standardized. This function

is slightly more complex than the others considered because factor 1 and factor 2 impact the

response quite differently over their [0, 1] ranges.

Figure 5 shows the posterior distribution of ρk, k = 1, . . . , 10, for one iteration of this

simulation. For this data, the posterior distributions corresponding to the inert variables are

all pushed tightly against one. As it should, the added null variable mimics this behavior,

as can be seen by looking at the 10th percentile of the distribution for posterior medians of

inert variables drawn on the figure. As a result, RDVS correctly detects that the distributions

for ρ1 and ρ2 look discernibly different than the distribution for ρ of an inert factor. Table

4 summarizes the results for 1000 simulations. For this example, RDVS does very well at

identifying factors 1 and 2 as having a significant impact on the response.

EXAMPLE 4:

We now illustrate the methodology a more challenging example for variable selection. Consider

the “Wonderland” computer simulator (Milik, Prskawetz, Feichtinger, and Sanderson, 1996)

based on a mathematical model for exploring strategies for sustainable global development.
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Figure 5: Posterior distributions of ρk for one iteration of the simulation study in Example 3.
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Table 4: Proportion of times each factor is identified as important in 1000 generations of the response

given by (7).

Factor

Percentile 1 2 3 4 5 6 7 8 9 10

5th 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001

10th 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001

15th 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001
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There are 41 inputs that generally fall into the three categories: population, economic, and

environmental factors. Each combination of settings for the 41 factors represents a strategic

policy for maintaining a sustainable environment. The output of the computer code is a human

development index (HDI), where high values of the index indicate a more desirable, sustainable

system. The analysis we consider here is based on a computer experiment consisting of 500

runs of a space-filling (e.g., see Johnson, Moore and Ylvisaker, 1990) Latin hypercube design.

The complicated nature of this code makes it an ideal candidate for the flexible GP model.

Schonlau and Welch (2005) use the Wonderland experiment to illustrate an analysis of variance

based approach to screening in computer experiments. In their approach, they fit the GP model

via a sequential one-at-a-time likelihood approach. The GP predictor is then decomposed into

main effects, two-factor interactions, and higher order interactions. The importance of each

effect is assessed by looking at its percentage of total functional variance. This parallels other

variance-based methods for sensitivity analysis, such as the Sobol’ decomposition (Sobol’,

1990). Saltelli, Chan and Scott (2000) present a nice overview of this and other sensitivity

analysis techniques.

We applied RDVS to identify active factors for this experiment. To implement our ap-

proach, we transform the 500 × 41 design matrix to the unit hypercube and standardize the

response (HDI). It is suggested by Schonlau and Welch (2005) that no extra error term is

required for fitting this code. Following their suggestion, we model the response simply as

y(X) = z(X),

where z(X) is a Gaussian process with the spatial correlation described earlier. Figure 6 shows

the posterior distribution of ρ for the 41 factors, with the 10th percentile of the reference dis-

tribution drawn. By choosing as active those factors with a posterior median of ρ below the

cut-off, we identify 13 of the 41 factors to have an important impact on the response (factors

1, 2, 4, 7, 8, 10, 11, 13, 23, 26, 27, 28, and 40). Schonlau and Welch (2005) identified eight

active factors. In our analysis, we find the same 8 factors plus an additional five. At the

screening stage, we feel comfortable being more liberal on the identification of active factors,

particularly in this setting where the extra factors identified appear to be explainable. For ex-

ample, Schonlau and Welch (2005) identified sustainable pollution in the southern hemisphere
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Figure 6: Posterior distribution of ρk for the Wonderland examples

1 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Factor

to be an important factor for the HDI. We found this as well, but also identified sustainable

pollution in the northern hemisphere to be active.

The differences in results not only depend on the screening technique used, but also on the

estimation procedure for fitting the GP model. As mentioned, Schonlau and Welch (2005) use

a likelihood based procedure, where one factor at a time is added to the model. Their approach

does not explore the model space as extensively as the one proposed here, and thus one should

anticipate some differences. To augment our approach, one could follow up our results by

looking at main effect and interaction plots and by also calculating variance components (e.g.,

Schonlau and Welch, 2005) for the 13 active factors. This allows for further assessment of the

importance of these factors. The Bayesian probabilistic sensitivity analysis approach of Oakley

and O’Hagan (2004) would be appropriate for the framework we consider.

Remark: Generally, the sensitivity measures (e.g., Saltelli, Chan and Scott, 2000) are used

to seek understanding of how a model changes with changes to its inputs. One aspect of

this is factor screening. In recent work, Oakley and O’Hagan (2004) demonstrate that many

popular sensitivity indices can be estimated using a Bayesian approach, which is particularly

beneficial in situations where the code is expensive to run. In many ways, the variable selection

method we propose complements these sensitivity analysis techniques. The usual approach to
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the estimation of variance decomposition indices (e.g. Schonlau and Welch, 2005; Oakley and

O’Hagan, 2004) requires computing an index for each main effect and two-factor interaction.

For example, in the case of the Wonderland model this means evaluation high-dimensional

integrals for 41 main effects and 820 two-factor interactions. The advantage of this approach,

however, is that it results in effect estimates that can be easily visualized and interpreted. On

the other hand, sensitivity indices that attempt to reduce computation by amalgamating the

effects of each factor, such as the total effect index (Saltelli, Chan and Scott, 2000; Oakley and

O’Hagan, 2004), lose interpretability and only suggest relative importance of inputs, since it

is unclear what are “large” or “small” values of this index.

The proposed methodology serves as a cohesive answer to these challenges. It can be

used to screen directly or as a precursor to the visualization and ANOVA approaches through

identification of factors that are potentially active (in any capacity) with relative ease. Variance

components can then be calculated, post-hoc, for main effects and two-factor interactions

involving only these active factors (rather than all the factors) so the nature of their effects

can be visualized or quantified. Alternatively, the RDVS technique can be used for assessing

significance of total effect indices. In the methodology described, we look at the posterior

distribution of ρ for each input to assess their importance relative to the posterior distribution

of ρ for a dummy factor. There is no particular reason why one could not create a reference

distribution of the total effect index instead. We look at the distribution of ρ for simplicity,

since it falls directly out of the estimation procedure and captures similar information as the

total effect index.

6 Sensitivity to Choice of Prior Distributions

To further understand the performance of RDVS, it would be beneficial to consider its robust-

ness to the choice of prior distributions. Recall from Section 3 that priors are assigned for

the GP parameters λz, λε, and ρ. The prior assigned to λz was a gamma distribution with

parameters az and bz chosen so that E(λz) = 1. This selection was made to reflect the prior

belief that the GP z(X) should account for essentially all of the variability in the standardized

response. This is expected in this setting, so we do not explore alternative priors on λz.
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A gamma prior was also used for the white noise variability λε, governed by parameters

aε and bε. The prior on λε specifies the amount of variability in the response that can be

attributed to random error. We chose aε and bε so that E(λε) = 100; that is, so that it is

expected only about 10% of the response standard deviation is explainable by random error.

We also had the additional constraint that λε < 5, which prevented the white noise component

from absorbing any more than about 45% of the response standard deviation at any realization

of the MCMC analysis.

To investigate the robustness of RDVS to the choice of prior on λε, we try varying the choice

of bε. For fixed aε, changing bε allows for adjustments to the mean of this prior distribution.

Consider again the linear response function given by (5) in Example 1 of the previous section.

The simulation study on this response function is repeated with two alternative prior choices

for λε. First, a Γ(aε = 2.5, bε = .0025)I[λε>5] prior is used. Under this prior, E(λε) = 1000,

which implies only about 3% of the response standard deviation is expected to be attributable

to noise. The same lower bound constraint is kept. An example of the impact on the analysis

due to making this change on bε can be seen in boxplots of the ρk posterior distributions given

in Figure 7(a). For this plot, the same linear response used for the detailed illustration of RDVS

in Example 1 is used. This prior encourages the GP to account for more of the variability in

the response, which manifests itself as an increased signal, or more values far from one in the

boxplots. However, the added inert variable is given the same prior, and it self-calibrates itself

to behave like the other inert factors. As a result, the 10th percentile cut-off of the reference

distribution is also farther from one, and the correct variable selections are still made. The

results over 1000 simulations (with the response generated by (5)) are given in Table 5. This

table shows a slight decrease in the frequency of the correct detection of the first four factors

compared to Table 1 of Example 1.

Alternatively, we consider changing the prior on λε to encourage more of the variability to

be absorbed by the random error component. To do this, a Γ(aε = 2.5, bε = 0.1)I[λε>5] prior on

λε is used. Given this value of bε, E(λε) = 25, so about 20% of the response standard deviation

is expected to be in the error. This has the opposite impact on the posterior distribution of the

ρk as the previous change. In this case, the boxplots corresponding to inert factors are pushed
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(b) bε = 0.1

Figure 7: Posterior distributions of the experimental variables corresponding to changes in the prior

on λε.

Table 5: Proportion of times each factor is identified as important in 1000 generations of the response

when the prior on λε has bε = 0.0025.

Factor

Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.568 0.578 0.680 0.566 0.043 0.041 0.028 0.079 0.050 0.067

10th 0.777 0.809 0.877 0.801 0.078 0.081 0.058 0.135 0.101 0.130

15th 0.902 0.909 0.944 0.915 0.108 0.107 0.092 0.194 0.133 0.180
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Table 6: Proportion of times each factor is identified as important in 1000 generations of the response

when the prior on λε has bε = 0.1.

Factor

Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.854 0.862 0.895 0.871 0.028 0.027 0.028 0.078 0.040 0.039

10th 0.969 0.979 0.988 0.976 0.043 0.044 0.041 0.107 0.058 0.058

15th 0.995 0.997 0.998 0.995 0.047 0.055 0.046 0.121 0.068 0.063

against one. Mimicking this behavior, the posterior distribution of the added inert factor is

also pushed closer to one, as illustrated in Figure 7(b) (again, the same example response was

used for this plot). The results from 1000 simulations are displayed in Table 6. In this case,

the first four factors are correctly determined to be active with a higher frequency than in

Example 1. Overall, changing this prior does have some impact, but due to the self-calibration

of the added inert variable, the performance of the RDVS methodology is still quite good.

We next explore the impact of changing the prior for ρ on the methodology. This mixture

prior, given in (3), is specified by γ, the prior probability that a factor is active. In all of the

previous examples, γ = 1/4 was taken to be a reasonable value. Consider now two alternative

values of γ: γ = 1/10 and γ = 1/2. We believe these to be extremities in terms of prior beliefs

on effect sparsity. Returning to the linear function given in (5), the simulations are repeated

with these varying priors. Again, because the added factor has the same prior information as

the other factors, its corresponding posterior distribution still mimics those of the other inert

factors in the analysis. Figure 8 demonstrates this point for the same illustrative response used

throughout. As can be seen in Tables 7 and 8, the performance of RDVS is quite robust to

the prior choice of γ.

7 Cylinder Deformation Application Re-Visited

The examples explored in Section 5 demonstrate that RDVS performs well as a variable se-

lection methodology. In this section, we use it for screening in the Taylor cylinder example in

Section 2.
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(a) γ = 0.1
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(b) γ = 0.5

Figure 8: Posterior distributions of the experimental variables corresponding to changes in the prior

on ρk.

Table 7: Proportion of times each factor is identified as important in 1000 generations of the response

when the prior on ρ has γ = 0.1.

Factor

Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.652 0.637 0.742 0.674 0.036 0.019 0.023 0.069 0.030 0.041

10th 0.887 0.878 0.907 0.892 0.054 0.038 0.037 0.096 0.052 0.076

15th 0.963 0.955 0.981 0.966 0.064 0.048 0.047 0.109 0.063 0.093

Table 8: Proportion of times each factor is identified as important in 1000 generations of the response

when the prior on ρ has γ = 0.5.

Factor

Percentile 1 2 3 4 5 6 7 8 9 10

5th 0.659 0.675 0.759 0.661 0.037 0.035 0.035 0.114 0.043 0.072

10th 0.844 0.875 0.921 0.868 0.068 0.070 0.074 0.172 0.093 0.120

15th 0.939 0.945 0.974 0.948 0.099 0.110 0.113 0.235 0.148 0.176
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Recall that this model is governed by 14 parameters. A computer experiment was performed

based on a five-level, nearly orthogonal array design (Wang and Wu, 1992), which prescribed

118 different input settings at which to carry out the simulation trials. The output from the

code is multivariate, and thus there are several measures of deformation one could consider

using in the analysis. Since the method presented is for univariate responses, we chose to use

the length of the cylinder after impact as our response. Figure 9 shows plots of the simulated

cylinder length against the five standardized settings for each of the 14 input factors. From

Figure 9: Plots of 118 simulated cylinder heights versus standardized input parameter settings for each

of the 14 parameters governing the plastic-elastic flow model used to model the cylinder deformation.
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this rudimentary figure it appears that factor 6, which controls how temperature and density

affect the plastic stress of the metal, is most important. It is difficult to otherwise distinguish

between the factors, so RDVS is used to determine which of the factors are influencing the

cylinder lengths after impact. To implement RDVS in this setting, the 118×14 design matrix,

X, is (repeatedly) augmented with an additional column and the model outlined in Section 4

is fit. The idea is that this would be the analysis followed if this were a 15 factor experiment.

In this case, however, it is known for certain that the 15th factor is inert.

To be comparable, the added factor should be treated in the same manner as the experiment

factors in both the design and analysis stages. Thus the added factor should have five level
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settings, with 23 or 24 trials per setting, corresponding to the original 5-level, nearly orthogonal

design matrix. To create the random added column, we begin with a vector which has five

equally spaced level settings, (0, 0.25, 0.50, 0.75, 1.00), with 23 copies of each level (i.e., a 115×1

vector). Next, three additional trials from the five level settings are randomly chosen, giving

118 trials for the added factor. The vector is then randomly permuted, resulting in the added

column. This procedure is repeated for each of the m = 100 added columns.

Figure 10: Posterior distributions of ρk for the experiment factors in the Taylor cylinder experiment.
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A quick glance at Figure 10 reveals that our initial intuition is confirmed (i.e., factor 6,

the impact of temperature and density on the stress rate, is an important factor). When the

10th percentile of the posterior distribution of the median correlation parameter for the inert

column is drawn, seven factors are identified as active: factors 3, 5, 6, 7, 9, 11, and 14. Notice

that factor 2 is deemed inert since the the posterior median of ρ2 (0.9921) is larger than the

cut-off (0.9909) computed from the posterior distribution of the median correlation parameter

for the added factor. It is likely, however, that an experimenter may consider carrying factor

2 forward to the next stage of investigation if the cost of doing so is not prohibitive.

Remark: By using RDVS, the number of experimental factors to be carried on to the next

experiment is reduced by half. When conducting subsequent trials, the experimenter will be

faced with setting the levels of both the active and inert factors to run the code. The next stage

design should give priority to the active factors so the experiment goals (e.g., optimization or
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response surface estimation) can be met. For an inert factor, one may elect to adjust these as

well, thereby allowing for a re-evaluation of the the original screening decisions. Frequently, the

cost of adjusting the levels of an input factor cannot be ignored. For instance, if the factor of

interest is the mesh threshold in a finite element analysis and is inert over the range explored,

one would choose the most coarse mesh (in the range of meshes explored). Changing the level

of this factor would mean investigating a finer mesh which, in turn, can cause the simulator

to run substantially longer in the future investigation.

8 Concluding Remarks

We have proposed a new method of variable selection for Bayesian Gaussian process models.

The basic idea arises from a thought experiment: what would the posterior distribution cor-

responding to the correlation parameter of an inert variable look like given the data? This

question is addressed by including an inert variable in the analysis to find a reference distribu-

tion against which to assess the importance of the true experiment variables. This provides an

interpretable way to make screening decisions. The simulated examples in Section 5 and real

computer experiment analyzed in Section 7 demonstrate the promise of this new approach.

There are a few other issues worth noting. Firstly, it is natural to wonder whether some

of the computational effort can be saved by using several added factors per iteration of the

methodology, and conducting fewer iteration. After some experimentation, we have found that

using more than one added factor in the setting considered here can work quite well. So, if

one adds, for example, 4 extra factors, but with only a quarter of the RDVS steps, similar

decisions are made. We also found, however, that if one adds too many variables (say 100) one

quickly loses power.

Secondly, it is possible to imagine a scenario where ρp+1 converges immediately to 1 for

all added columns. As a result, there would be no noise in the posterior distribution of a null

median correlation parameter and, therefore, all factors with ρ̃k < 1 could be deemed active.

This can occur when the response is dominated by a few factors, but the factor sparsity

assumption fails to hold. That is, when all factors are active to some degree, but only a few

of them explain most of the variability. In this case, one is not interested in which factors are
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inert, but rather which are negligible. In such screening applications, deciding which factors

are inert or active may be too liberal a criterion for determining which factors to investigate in

further experimentation. To address this, one could spike the response with some very small

effect based on the added column. That is, the added factor is not inert, but has a small

enough impact to be considered negligible (say less that 5% of the unstandardized standard

deviation of the response). The posterior distribution of the median ρp+1 would then represent

that of a factor which is negligible rather than entirely inert.

Lastly, for future exploration, it would be interesting to see how this method would perform

for other models. There are some features of RDVS that point to its success in the particular

case of the Gaussian process model that may need to be reconsidered in order to extend the

methodology to other models. For example, the number of active and inert factors at each

iteration of the MCMC varies because of the draw of ρk from the mixture distribution in (3).

This has the effect of changing the model size through each iteration. In a regression context,

this would amount to entertaining sub-sets of factors rather than the saturated model. In

order for the posterior distribution of the white noise component in a regression problem to be

unaffected by this procedure, one might have to keep the expected model size constant rather

than the factor inclusion probability, γ, constant (as we elected to do). In the Gaussian process

case, this was not important because the model used had very little variability associated with

the random error, and this error was only included to adjust for numerical jitter and roughness

in the response.
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